A Vicinal Acyloxy Group Participation S_N2 Reaction of Thiol Nucleophiles in the Formation of Thioacetals

WU, Qinpei^{*,}^a(武钦佩) XI, Xiaodong^a(席小东) CHEN, Xi^a(陈曦) LI, Hui^b(李辉) ZHANG, Qingshan^a(张青山)

^a Department of Applied Chemistry and Pharmarceutics, Beijing Institute of Technology, Beijing 100081, China ^b Department of Chemistry, School of Science, Beijing Institute of Technology, Beijing 100081, China

Thioacetalization of acyl protected furanosides led to products with an ethanethiol group at C-2 and 3-*O*-acetyl-1,2-di-*O*-isopropylidene-*D*-furanoses were converted into corresponding thioacetals with two ethanethiol groups at both C-2 and C-3 positions under the standard thioacetalization conditions. All products were characterized by ¹H NMR, ¹³C NMR and HRMS data. X-ray structure analysis indicates that the vicinal acyloxy group is stereoselectively substituted by ethanethiols. The supposed mechanisms for these two kinds of transformations were presented.

Keywords acetal, thioacetal, protecting group, acyl group

Introduction

Thioacetals are frequently employed as carbonyl protecting groups in synthetic chemistry due to their ready preparation and proper stabilities under both acidic and basic reaction conditions,¹ as well as used as precursors of acyl anion equivalents for formation of carbon-carbon bonds since the pioneer work reported by Corey.² In this view, a number of methods for preparation of thioacetals have been developed. Usually, they are prepared via the condensation of carbonyl compounds with thiols in the presence of protic acids or Lewis acids, such as $ZnCl_2$,³ Ni Cl_2 ,⁴ In Cl_3 ,⁵ I₂,⁶ NBS⁷ and SiO₂-SO₃H.⁸ Herein, we wish to report a vicinal acyloxy group participation S_N2 reaction of ethanethiol under the standard thioacetalization conditions.

Experimental

General

NMR spectra were measured at 400 MHz with a Varian Mercury 400 spectrometer, operating at 400 MHz for ¹H NMR and 100 MHz for ¹³C NMR spectra. Tetramethylsilane was used as an internal standard, and J values are given in Hz. m.p. was measured with an X-6 melting-point apparatus. High resolution electron impact mass spectra (HRMS EI) were recorded on a Bruker Daltonics Inc. APEXII-FT-ICR mass spectrometer. Dichloromethane was dried over phosphorus pentoxide and distilled.

General procedure

ZnBr₂ (0.27 g, 1.2 mmol) was added to a solution of

sugar derivative (1 mmol) and ethanethiol (0.78 mL, 10.0 mmol) in dry CH_2Cl_2 (5.0 mL). After complete conversion, saturated aqueous solution of NaHCO₃ (20 mL) was added and the two layers were separated. The organic layer was washed with brine (20 mL×2), dried (MgSO₄) and concentrated under reduced pressure. The residue was isolated through short column chromatography on silica gel, which was eluded with EtOAcpetroleum (1 : 9, *V/V*) to give the target compound.

5-Deoxy-3,4-di-*O***-acetyl-2-***S***-ethyl-2-thio**-*D***-lyxose diethyl dithioacetal (2)** m.p. 64 °C; ¹H NMR (DMSO d_6) δ : 1.08—1.23 (m, 12H), 2.04 (s, 3H), 2.14 (s, 3H), 2.58—2.70 (m, 6H), 3.22 (dd, *J*=2.0, 10.4 Hz, 1H), 4.09 (d, *J*=2.0 Hz, 1H), 5.04 (dd, *J*=2.0, 10.4 Hz, 1H), 5.41 (dd, *J*=1.6, 6.4 Hz, 1H); ¹³C NMR (CDCl₃) δ : 14.59, 14.76, 17.32, 21.21, 21.53, 26.52, 26.66, 26.48, 53.27, 55.33, 69.87, 75.57, 170.14, 170.32; HRMS (EI) calcd for C₁₅H₂₈O₄S₃ 368.1150, found 368.1155.

5-Deoxy-3,4-di-*O***-benzoyl-2-***S***-ethyl-2-thio***-D***-lyxose diethyl dithioacetal (6)** ¹H NMR (CDCl₃) δ : 1.21— 1.28 (m, 9H), 1.41 (d, *J*=6.4 Hz, 3H), 2.67—2.77 (m, 6H), 3.17—3.20 (m, 1H), 4.13 (d, *J*=5.8 Hz, 1H), 5.95 (dd, *J*=4.8, 5.5 Hz, 1H), 6.01 (t, *J*=4.0 Hz, 1H), 7.38 —7.42 (m, 4H), 7.50—7.53 (m, 2H), 8.01—8.04 (m, 4H); ¹³C NMR (CDCl₃) δ : 14.70, 14.77, 20.67, 25.47, 26.19, 53.65, 67.65, 75.61, 75.91, 83.73, 84.40, 127.78, 128.05, 128.40, 128.52, 128.64, 138.51, 138.74; HRMS (EI) calcd for C₂₅H₃₂O₄S₃ 492.1463, found 492.1467.

3,4,5-Tri-*O***-acetyl-2-***S***-ethyl-2-thio**-*D***-arabinose diethyl dithioacetal (8)** ¹H NMR (CDCl₃) δ : 1.24— 1.30 (m, 9H), 2.06 (s, 3H), 2.09 (s, 6H), 2.68—2.75 (m, 6H), 3.12 (dd, J=3.2, 5.1 Hz, 1H), 4.06 (d, J=5.2 Hz, 1H), 4.15 (dd, J=5.8, 12.4 Hz, 1H), 4.40 (dd, J=2.7,

 ^{*} E-mail: qpwu@bit.edu.cn; Fax: 0086-010-68912917; Tel.: 0086-010-68945474
 Received January 13, 2009; revised March 17, 2009; accepted April 28, 2009.
 Project supported by the National Natural Science Foundation of China (No. 30340070) and the Ministry of Science and Technology of China (No. 2006AA100216).

12.4 Hz, 1H), 5.40—5.44 (m, 1H), 5.74 (dd, J=3.1, 7.2 Hz, 1H); ¹³C NMR (CDCl₃) δ : 9.68, 10.07, 16.23, 16.41, 16.58, 21.46, 22.05, 24.09, 25.16, 48.36, 51.77, 57.33, 66.66, 66.95, 165.21, 165.32, 166.21; HRMS (EI) calcd for C₁₇H₃₀O₆S₃ 426.1205, found 426.1211.

3,4,5-Tri-*O*-acetyl-2-*S*-ethyl-2-thio-D-lyxose diethyl dithioacetal (10) m.p. 60 °C; ¹H NMR (CDCl₃) δ : 1.19—1.30 (m, 9H), 2.05—2.14 (m, 9H), 2.63—2.77 (m, 6H), 3.22 (dd, *J*=3.2, 9.6 Hz, 1H), 4.02—4.07 (m, 2H), 4.28 (dd, *J*=5.6, 11.6 Hz, 1H), 5.35 (dd, *J*=1.2, 9.6 Hz, 1H), 5.32—5.77 (m, 1H); ¹³C NMR (CDCl₃) δ : 14.59, 14.67, 14.70, 20.93, 21.09, 21.15, 26.46, 26.50, 29.75, 53.45, 55.24, 63.02, 70.05, 72.27, 169.81, 170.22, 170.64; HRMS (EI) calcd for C₁₇H₃₀O₆S₃ 426.1205, found 426.1210.

4,5,6-Tri-*O*-acetyl-2,3-di-*S*-ethyl-2,3-dithio-*D*-allose diethyl dithioacetal (13) m.p. 62 °C; ¹H NMR (CDCl₃) δ : 1.22—1.34 (m, 12H), 2.00—2.11 (m, 9H), 2.60—2.89 (m, 8H), 3.07 (dd, J=5.2, 8.4 Hz, 1H), 3.48 (dd, J=5.2, 8.4 Hz, 1H), 4.17—4.22 (m, 1H), 4.49 (dd, J=2.4, 12.4 Hz, 1H), 4.64 (d, J=4.8 Hz, 1H), 5.52— 5.55 (m, 1H), 5.89 (dd, J=1.6, 6.4 Hz, 1H); ¹³C NMR (CDCl₃) δ : 14.60, 14.74, 14.85, 14.92, 15.02, 21.23, 21.27, 25.79, 26.39, 28.31, 30.24, 51.47, 57.30, 57.48, 62.56, 71.96, 72.78, 169.19, 169.61, 170.82; HRMS (EI) calcd for C₂₀H₃₆O₆S₄ 500.1395, found 500.1403.

5-Deoxy-4-*O***-acetyl-2,3-di-***S***-ethyl-2,3-dithio***D***-ribose diethyl dithioacetal (15)** ¹H NMR (CDCl₃) δ : 1.22—1.33 (m, 15H), 2.04 (s, 3H), 2.60—2.87 (m, 9H), 3.34 (dd, J=4.4, 9.6 Hz, 1H), 4.78 (d, J=4.4 Hz, 1H), 5.63 (dd, J=4.4, 6.4 Hz, 1H); ¹³C NMR (CDCl₃) δ : 14.62, 14.76, 15.03, 15.23, 16.30, 21.63, 26.32, 26.46, 28.87, 29.90, 54.61, 56.21, 57.61, 72.34, 170.12; HRMS (EI) calcd for C₁₅H₃₀O₂S₄ 370.1129, found 370.1134.

4,5-Di-*O*-acetyl-2,3-di-*S*-ethyl-2,3-dithio-*D*-ribose diethyl dithioacetal (17) ¹H NMR (CDCl₃) δ : 1.26— 1.32 (m, 12H), 2.08 (d, *J*=5.5 Hz, 6H), 2.69—2.88 (m, 8H), 3.02—3.04 (m, 1H), 3.56 (t, *J*=6.8 Hz, 1H), 4.42 (dd, *J*=6.2, 12.2 Hz, 1H), 4.49 (d, *J*=2.8 Hz, 1H), 4.54 (dd, *J*=2.8, 17.1 Hz, 1H), 5.63—5.66 (m, 1H); ¹³C NMR (CDCl₃) δ : 14.57, 14.74, 14.86, 15.08, 21.06, 21.38, 25.82, 26.52, 28.47, 30.29, 50.55, 56.60, 57.56, 63.85, 73.63, 169.86, 170.85; HRMS (EI) calcd for C₁₇H₃₂O₄S₄ 428.1183, found 428.1190.

5-Deoxy-3-*O***-benzoyl-***D***-xylose diethyl dithioacetal** (19) ¹H NMR (CDCl₃) δ : 1.21—1.33 (m, 9H), 2.70— 2.86 (m, 4H), 3.36—3.40 (m, 1H), 4.38—4.50 (m, 1H), 5.32 (d, *J*=7.2 Hz, 1H), 5.60—5.66 (m, 1H), 7.43—7.51 (m, 2H), 7.56—7.62 (m, 1H), 8.11 (d, *J*=7.6 Hz, 2H).

3,5-Di-*O*-benzoyl-*D*-xylose diethyl dithioacetal (21) ¹H NMR (CDCl₃) δ : 1.22—1.37 (m, 6H), 2.64—2.69 (m, 2H), 2.76—2.81 (m, 2H), 3.42 (dd, *J*=5.1, 7.4 Hz, 12H), 4.50 (dd, *J*=5.7, 11.4 Hz, 1H), 4.60 (dd, *J*=6.6, 11.4 Hz, 1H), 4.69—4.72 (m, 1H), 5.37 (d, *J*=7.5 Hz, 1H), 5.91 (dd, *J*=3.4, 5.2 Hz, 1H), 7.40—7.57 (m, 6H), 7.98—8.08 (m, 4H).

5,6-Di-O-acetyl-3-O-Ts-D-glucose diethyl dithioacetal (23) 1 H NMR (CDCl₃) δ : 1.25–1.33 (m, 6H), 2.07 (s, 3H), 2.14 (s, 3H), 2.44 (s, 3H), 2.763–2.78 (m, 4H), 3.87 (dd, J=3.1, 8.2 Hz, 1H), 4.12–4.15 (m, 2H), 4.28 (dd, J=3.3, 12.4 Hz, 1H), 4.56 (dd, J=2.7, 12.4 Hz, 1H), 4.80–4.83 (m, 1H), 5.43 (t, J=2.4 Hz, 1H).

Results and discussion

In the course of our synthesis of nucleosides, we initially wished to convert compound 1 into thioacetal 3 via treatment of methyl 2,3-di-O-acetyl-5-deoxy-Dxylofuranoside (1) with ethanethiol (5 equiv.) in the presence of zinc bromide (1.1 equiv.) in dichloromethane solution at room temperature. In fact, thioacetal 2 with a thioether group at C-2 was obtained as crystalline in 50% yield without the desired product after a series of attempts. Furthermore, in the presence of ZnCl₂, Dowex 50 W, p-methylbenzenesulfonic acid (PTSA) or 6 mol/L HCl, no product was formed under various conditions (Entries 1-4, Table 1). Compound 2 was formed as a main product as BF₃•Et₂O, BiCl₃ and ZnBr₂ were used as catalysts, respectively (Entries 5-7, Table 1), which is similar to the results reported by Blumberg et al.⁹

 Table 1
 Treatment of 1 with ethanethiol with different catalysts

Entry	Catalyst	Solvent	Time/h	Product
				(yield)
1	$ZnCl_2$	CH_2Cl_2	48	no
2	DowX	MeOH	48	no
3	6 mol/L HCl	MeOH	32	no
4	PTSA	CH_2Cl_2	48	no
5	$BF_3 \bullet Et_2O$	CH_2Cl_2 (r.t. or -10 °C)	18	2 (45%)
6	BiCl ₃	CH_2Cl_2 (r.t. or -10 °C)	32	2 (47%)
7	ZnBr ₂	CH_2Cl_2 (r.t. or -10 °C)	15	2 (50%)

When compound **4** was treated with ethanethiol under similar reaction conditions, compound **2** was also generated in 52% and 50% yields in the presence of ZnBr₂ and BiCl₃, respectively (Entry b, Table 2), which was recrystallized from petroleum ether (30–60 °C). The molecular structure of compound **2** was fully characterized by ¹H NMR, ¹³C NMR and HRMS data, and a single-crystal X-ray diffraction study (Figure 1). X-ray crystallographic analysis allowed absolute confirmation of the molecular structure and the configuration of the second carbon atom to be anticlockwise that is contrary to its precursor. These results might suggest that the 2-acetyloxy group participate this transformation and be substituted by ethanethiol via an S_N2 mechanism.

Neighboring acyloxy group participating reaction is well known¹⁰ and has extensively been employed in stereoselective synthesis,¹¹ particularly, in the synthesis of glycosides¹² and nucleosides.¹³ As anticipated, products with similar molecular structures, **6**, **8** and **10**, were formed when benzoyl protected compound **5**, *D*-ribose derivative **7** and *D*-xylose derivative **9** were treated with ethanethiol under the same conditions as above, respectively (Entries c, d and e, Table 2).

Figure 1 ORTEP view of the X-ray crystal structure of compound **2** (Crystallographic data have been deposited with the CCDC under reference no. 644093). Monoclinic, $P3_2$, a = 8.9934(13) Å, b=8.9934(13) Å, c=22.219(4) Å, $\beta=90.00^{\circ}$, V=1556.33 Å³, Z=3, and $\mu=0.369$ mm⁻¹.

^a Promoted by BiCl₃.

In view of the fact that the configurations of C-2 and C-4 of compound 2 are reversed and maintained, respectively (Figure 1), it might suggest that the 2-acyloxy group participates to disperse the positive

charge of the anomeric cation generated in the presence of $ZnBr_2$ to give a corresponding more stable acetoxonium species **11** (Scheme 1), which directs the attack of nucleophile, ethanethiol, from the top face at C-2, meanwhile, the 2-acyloxy group moves to C-1 (Scheme 1).

Scheme 1 The proposed mechanism for the formation of α -thioether group in thioacetalization reaction

On the other hand, as 3,5,6-tri-*O*-acetyl-1,2-di-*O*-isopropylidene-*D*-glucofuranose (**12**) was treated with thiols under similar conditions as above, product **13** was formed, in which there are two thioether groups at both C-2 and C-3 (Entry a, Table 3), respectively.¹⁴ Molecular structure of **13** was identified with ¹H NMR, ¹³C NMR and HRMS data, and a single-crystal X-ray diffraction study (Figure 2). X-ray crystallographic analysis of **13** showed absolute confirmation of the configurations of the C-2 and C-3 to be both clockwise. Compared to its precursor **12**, the configurations of C-2 and C-3 are kept and inversed, respectively (Figure 2).

Figure 2 ORTEP view of the X-ray crystal structure of compound **13** (Crystallographic data have been deposited with the CCDC under reference no. 665474). Monoclinic, $P2_1$, a = 8.3395(12) Å, b=16.726(2) Å, c=9.2027(14) Å, $a=90^{\circ}$, $\beta=95.772(5)^{\circ}$, $\gamma=90^{\circ}$, V=1277.15 Å³, and $\mu=0.403$ mm⁻¹.

Entry	Substrate	Product	Time/h	Yield/%
a	OAc OAc AcO O I2	OAc SEt SEt Aco	5	78
b	Ac0 0 0	SEt SEt SEt SEt SEt 15	8	64
с	Ac0 Ac0 16	SEt SEt Aco ÖAc SEt 17	15	86
d	BzO 0 0	OBz SEt SEt OH OH 19	6	72
e		OBz SEt BzO OH OH 21	4	61
f	OAc OAc TsO O O O O O O O O O	QAC OTS SEt ACO	2	95

Table 3Thioacetalization of 3-O-acyl-1,2-di-O-isopropylidene-D-
furanoses promoted by $ZnBr_2$

Under similar reaction conditions, 15 and 17 (Entries b and c, Table 3) were obtained in moderate to good yields as expected. Both 18 and 20 were, however, converted into thioacetal 19 and 21, respectively, without ethanethio groups, which is similar to the thioacetalization product reported by Nicolaou as a 3-deoxy-1,2-di-Oisopropylidene-D-ribofuranose derivative was treated with ethanethiol using zinc chloride as catalysts.¹⁵ Additionally, 3-tosylate glucose derivative 22 was converted into corresponding thioacetal 23 without any thioether group. It is well known that tosylate groups were usually used as a non-participating group in organic synthesis,¹⁶ both the 3-acetyloxy and 1,2-di-Oisopropylidene groups thus might take part in thiol substitution process and the 3-acetyloxy group as a neighboring-group maybe play an important role via migration from C-3 to C-1. We could not exactly describe the mechanism for the ethanethio substitution approach due to the absence of undouted evidences although we can not thoroughly agree with the proposal of ethanethio group migration from C-1 to C-2 and then to C-3 described by Ferrier and his coworkers.⁹

Conclusion

We demonstrated that acyl protected furanosides were converted into corresponding thioacetals with a thiol ether group at C-2 and 3-O-acetyl-1,2-di-O-isopropylidene-D-furanoses were converted into corresponding thioacetals with two thioether groups at both C-2 and C-3 under the standard thioacetalization conditions. The molecular structure was elucidated by ¹H NMR, ¹³C NMR and HRMS data, and X-ray analysis and the supposed mechanism was depicted as neighboring acyloxy group participation and substitution by ethanethiol via an S_N2 manner.

Acknowledgments

We would like to thank Dr. Claire Simons' (Cardiff University) valuable advices.

References

 (a) Greene, T. W.; Wuts, P. G. *Protective Groups in Organic Synthesis*, 2nd ed., John Wiley and Sons, New York, 1999.

(b) Kocienski, P. J. *Protecting Groups*, Georg Thieme-Stuttgart, New York, **2004**.

 (a) Corey, E. J.; Seebach, D. Angew. Chem., Int. Ed. Engl. 1965, 4, 1075.

(b) Yus, M.; Najera, C.; Foubelo, F. *Tetrahedron* **2003**, *59*, 6147.

- 3 Evans, D. A.; Truesdule, L. K.; Grimm, K. G.; Nesbitt, S. L. J. Am. Chem. Soc. 1977, 99, 5009.
- 4 Khan, T. H.; Mondal, E.; Sahu, D. R.; Islam, S. *Tetrahedron Lett.* **2003**, *44*, 919.
- 5 Muthusamy, S.; Arulanada Babu, S.; Gunanathan, C. Tetrahedron Lett. 2001, 42, 359.
- 6 Samajdar, S.; Basu, M. K.; Becker, F. F.; Banik, B. K *Tetrahedron Lett.* 2001, *42*, 4425.
- 7 Kamal, A.; Chouhan, G. Synlett 2002, 474.
- 8 Karimi, B.; Khalkhali, M. J. Mol. Catal. A: Chem. 2007, 271, 75.
- 9 (a) Blumberg, K.; van Es, T. *Carbohydr. Res.* 1981, 88, 253.
 (b) van Es, T. *Carbohydr. Res.* 1974, 37, 373.
 (c) Bethell, G. S.; Ferrier, R. J. J. Chem. Soc., Perkin Trans. *I* 1972, 1033.
 (d) Bethell, G. S.; Ferrier, R. J. J. Chem. Soc., Perkin Trans. *I* 1972, 2873.
 10 (a) Capon, B.; McManus, S. P. Neighboring Group Participation, Plenum, New York, 1976.
 - (b) Berces, A.; Enright, G.; Nukada, T.; Whitfield, D. M. J. Am. Chem. Soc. 2001, 123, 5460.
 (c) Nukada, T.; Berces, A.; Zgierski, M. Z.; Whitfield, D. M. J. Am. Chem. Soc. 1998, 120, 13291.

(d) Yang, Z.; Lin, W.; Yu, B. Carbohydr. Res. 2000, 329, 879.

- (a) Tosin, M.; Murphy, P. V. Org. Lett. 2002, 4, 3675.
 (b) Whitfield, D. M.; Nukada, T. Carbohydr. Res. 2007, 342, 1291.
- (a) Paulsen, H. Angew. Chem., Int. Ed. Engl. 1982, 21, 155.
 (b) Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93, 1503.
 (c) Boons, G. J. Tetrahedron 1996, 52, 1095.
 (d) Davis, B. G. J. Chem. Soc., Perkin Trans. 1 2000, 2137.
 (e) Murakami, T.; Hirono, R.; Sato, Y.; Furusawa, K. Carbohydr. Res. 2007, 342, 1009.
- 13 Simons, C. Nucleoside Mimetics, Their Chemistry and Biological Properties, Gordon and Breach Science Publishers, Australia, Canada, 2001, p. 30.

 (a) Lajsic, S.; Cetkovic, G.; Popsavin, M.; Popsavin, V.; Miljkovic, D. Collect. Czech. Chem. Commun. 1996, 61, 298.

(b) Blumberg, K.; van Es, T. S. Afr. J. Chem. 1986, 39, 201.

- 15 Nicolaou, K. C.; Bunnage, M. E.; McGarry, D. G.; Shi, S. H.; Somers, P. K.; Wallace, P. A.; Chu, X. J.; Agrios, K. A.; Gunzner, J. L.; Yang, Z. *Chem. Eur. J.* **1999**, *5*, 599.
- (a) Crich, D.; Hutton, T. K.; Banerjee, A.; Jayalath, P.; Picione, J. *Tetrahedron: Asymmetry* 2005, *16*, 105.
 (b) Srivastava, V. K.; Schuerch, C. *Carbohydr. Res.* 1980, 79, C13.
 (c) Srivastava, V. K.; Schuerch, C. *J. Org. Chem.* 1981, *46*,
 - (c) Srivastava, V. K.; Schuerch, C. J. Org. Chem. **1981**, 46, 1121.

(E0901132 Chen, J.; Zheng, G.)